Towards More Sustainable and Trustworthy Reporting in Machine Learning

With machine learning (ML) becoming a popular tool across all domains, practitioners are in dire need of comprehensive reporting on the state-of-the-art. Benchmarks and open databases provide helpful insights for many tasks, however suffer from several phenomena: Firstly, they overly focus on prediction quality, which is problematic considering the demand for more sustainability in ML. Depending on the use case at hand, interested users might also face tight resource constraints and thus should be allowed to interact with reporting frameworks, in order to prioritize certain reported characteristics. Furthermore, as some practitioners might not yet be well-skilled in ML, it is important to convey information on a more abstract, comprehensible level. Usability and extendability are key for moving with the state-of-the-art and in order to be trustworthy, frameworks should explicitly address reproducibility. In this work, we analyze established reporting systems under consideration of the aforementioned issues. Afterwards, we propose STREP, our novel framework that aims at overcoming these shortcomings and paves the way towards more sustainable and trustworthy reporting. We use STREP’s (publicly available) implementation to investigate various existing report databases. Our experimental results unveil the need for making reporting more resource-aware and demonstrate our framework’s capabilities of overcoming current reporting limitations. With our work, we want to initiate a paradigm shift in reporting and help with making ML advances more considerate of sustainability and trustworthiness.

  • Published in:
    Data Mining and Knowledge Discovery
  • Type:
    Article
  • Authors:
    Fischer, Raphael; Liebig, Thomas; Morik, Katharina
  • Year:
    2024

Citation information

Fischer, Raphael; Liebig, Thomas; Morik, Katharina: Towards More Sustainable and Trustworthy Reporting in Machine Learning, Data Mining and Knowledge Discovery, 2024, April, https://doi.org/10.1007/s10618-024-01020-3, Fischer.etal.2024a,

Associated Lamarr Researchers

lamarr institute person Fischer Raphael - Lamarr Institute for Machine Learning (ML) and Artificial Intelligence (AI)

Raphael Fischer

Author to the profile
lamarr institute person Liebig Thomas - Lamarr Institute for Machine Learning (ML) and Artificial Intelligence (AI)

Prof. Dr. Thomas Liebig

Principal Investigator Trustworthy AI to the profile
lamarr institute person Morik Katharina e1663924705259 - Lamarr Institute for Machine Learning (ML) and Artificial Intelligence (AI)

Prof. Dr. Katharina Morik

Founding Director to the profile