Robust and Tiny Binary Neural Networks using Gradient-based Explainability Methods

Binary neural networks (BNNs) are a highly resource-efficient variant of neural networks. The efficiency of BNNs for tiny machine learning (TinyML) systems can be enhanced by structured pruning and making BNNs robust to faults. When used with approximate memory systems, this fault tolerance can be traded off for energy consumption, latency, or cost. For pruning, magnitude-based heuristics are not useful because the weights in a BNN can either be -1 or +1. Global pruning of BNNs has not been studied well so far. Thus, in this paper, we explore gradient-based ranking criteria for pruning BNNs and use them in combination with a sensitivity analysis. For robustness, the state-of-the-art is to train the BNNs with bit-flips in what is known as fault-aware training. We propose a method to guide fault-aware training using gradient-based explainability methods. This allows us to obtain robust and efficient BNNs for deployment on tiny devices. Experiments on audio and image processing applications show that our proposed approach outperforms the existing approaches, making it useful for obtaining efficient and robust models for a slight degradation in accuracy. This makes our approach valuable for many TinyML use cases.

  • Published in:
    Workshop on Machine Learning and Systems
  • Type:
    Inproceedings
  • Authors:
    Sabih, Muhammad; Yayla, Mikail; Hannig, Frank; Teich, Jürgen; Chen, Jian-Jia
  • Year:
    2023

Citation information

Sabih, Muhammad; Yayla, Mikail; Hannig, Frank; Teich, Jürgen; Chen, Jian-Jia: Robust and Tiny Binary Neural Networks using Gradient-based Explainability Methods, Workshop on Machine Learning and Systems, 2023, https://dl.acm.org/doi/10.1145/3578356.3592595, Sabih.etal.2023a,

Associated Lamarr Researchers

lamarr institute person Chen Jian Jia - Lamarr Institute for Machine Learning (ML) and Artificial Intelligence (AI)

Prof. Dr. Jian-Jia Chen

Area Chair Resource-aware ML to the profile