Real-Time Multi-Modal Semantic Fusion on Unmanned Aerial Vehicles with Label Propagation for Cross-Domain Adaptation

Unmanned aerial vehicles (UAVs) equipped with multiple complementary sensors have tremendous potential for fast autonomous or remote-controlled semantic scene analysis, e.g., for disaster examination. Here, we propose a UAV system for real-time semantic inference and fusion of multiple sensor modalities. Semantic segmentation of LiDAR scans and RGB images, as well as object detection on RGB and thermal images, run online onboard the UAV computer using lightweight CNN architectures and embedded inference accelerators. We follow a late fusion approach where semantic information from multiple sensor modalities augments 3D point clouds and image segmentation masks while also generating an allocentric semantic map. Label propagation on the semantic map allows for sensor-specific adaptation with cross-modality and cross-domain supervision. Our system provides augmented semantic images and point clouds with $approx$ 9 Hz. We evaluate the integrated system in real-world experiments in an urban environment and at a disaster test site.

  • Published in:
    Robotics and Autonomous Systems
  • Type:
    Article
  • Authors:
    Bultmann, Simon; Quenzel, Jan; Behnke, Sven
  • Year:
    2023

Citation information

Bultmann, Simon; Quenzel, Jan; Behnke, Sven: Real-Time Multi-Modal Semantic Fusion on Unmanned Aerial Vehicles with Label Propagation for Cross-Domain Adaptation, Robotics and Autonomous Systems, 2023, 159, January, https://www.sciencedirect.com/science/article/pii/S0921889022001750?via=ihub, Bultmann.etal.2023a,

Associated Lamarr Researchers

lamarr institute person Behnke Sven - Lamarr Institute for Machine Learning (ML) and Artificial Intelligence (AI)

Prof. Dr. Sven Behnke

Area Chair Embodied AI to the profile