Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning

Methods of artificial intelligence (AI) and especially machine learning (ML) have been growing ever more complex, and at the same time have more and more impact on people’s lives. This leads to explainable AI (XAI) manifesting itself as an important research field that helps humans to better comprehend ML systems. In parallel, quantum machine learning (QML) is emerging with the ongoing improvement of quantum computing hardware combined with its increasing availability via cloud services. QML enables quantum-enhanced ML in which quantum mechanics is exploited to facilitate ML tasks, typically in form of quantum-classical hybrid algorithms that combine quantum and classical resources. Quantum gates constitute the building blocks of gate-based quantum hardware and form circuits that can be used for quantum computations. For QML applications, quantum circuits are typically parameterized and their parameters are optimized classically such that a suitably defined objective function is minimized. Inspired by XAI, we raise the question of explainability of such circuits by quantifying the importance of (groups of) gates for specific goals. To this end, we transfer and adapt the well-established concept of Shapley values to the quantum realm. The resulting attributions can be interpreted as explanations for why a specific circuit works well for a given task, improving the understanding of how to construct parameterized (or variational) quantum circuits, and fostering their human interpretability in general. An experimental evaluation on simulators and two superconducting quantum hardware devices demonstrates the benefits of the proposed framework for classification, generative modeling, transpilation, and optimization. Furthermore, our results shed some light on the role of specific gates in popular QML approaches.

  • Published in:
    arXiv
  • Type:
    Article
  • Authors:
    Heese, Raoul; Gerlach, Thore; Mücke, Sascha; Müller, Sabine; Jakobs, Matthias; Piatkowski, Nico
  • Year:
    2023

Citation information

Heese, Raoul; Gerlach, Thore; Mücke, Sascha; Müller, Sabine; Jakobs, Matthias; Piatkowski, Nico: Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning, arXiv, 2023, https://arxiv.org/abs/2301.09138, Heese.etal.2023b,

Associated Lamarr Researchers

Thore Gerlach - Lamarr Institute for Machine Learning (ML) and Artificial Intelligence (AI)

Thore Gerlach

Scientist to the profile
lamarr institute person Mucke Sascha - Lamarr Institute for Machine Learning (ML) and Artificial Intelligence (AI)

Sascha Mücke

Author to the profile
lamarr institute person Jakobs Matthias - Lamarr Institute for Machine Learning (ML) and Artificial Intelligence (AI)

Matthias Jakobs

Scientist to the profile
lamarr institute person Piatkowski Nico - Lamarr Institute for Machine Learning (ML) and Artificial Intelligence (AI)

Dr. Nico Piatkowski

Autor to the profile