Action Space Design in Reinforcement Learning for Robot Motor Skills

Practitioners often rely on intuition to select action spaces for learning. The choice can substantially impact final performance even when choosing among configuration-space representations such as joint position, velocity, and torque commands. We examine action space selection considering a wheeled-legged robot, a quadruped robot, and a simulated suite of locomotion, manipulation, and control tasks. We analyze the mechanisms by which action space can improve performance and conclude that the action space can influence learning performance substantially in a task-dependent way. Moreover, we find that much of the practical impact of action space selection on learning dynamics can be explained by improved policy initialization and behavior between timesteps.

  • Published in:
    8th Annual Conference on Robot Learning
  • Type:
    Inproceedings
  • Authors:
    Eßer, Julian; Margolis, Gabriel B.; Urbann, Oliver; Kerner, Sören; Agrawal, Pulkit
  • Year:
    2024
  • Source:
    https://openreview.net/forum?id=GGuNkjQSrk

Citation information

Eßer, Julian; Margolis, Gabriel B.; Urbann, Oliver; Kerner, Sören; Agrawal, Pulkit: Action Space Design in Reinforcement Learning for Robot Motor Skills, 8th Annual Conference on Robot Learning, 2024, https://openreview.net/forum?id=GGuNkjQSrk, Esser.etal.2024a,

Associated Lamarr Researchers

lamarr institut team autor esser julian - Lamarr Institute for Machine Learning (ML) and Artificial Intelligence (AI)

Julian Eßer

Scientific Coordinator Embodied AI to the profile
Sören Kerner

Dr. Sören Kerner

Area Chair Planning & Logistics to the profile