Large scale summarization using ensemble prompts and in context learning approaches
The field of Information Assurance ({IA}) and Cybersecurity has seen substantial evolution, driven by advancements in technology and the increasing sophistication of threats in the digital age. This study employs Large Language Models ({LLMs}), as well as other advanced {NLP} techniques, to conduct a comprehensive analysis of literature from 1967 to 2024. By analyzing a corpus of more than 62,000 documents extracted from Scopus, our approach involves a comprehensive methodology that includes two main phases: topic detection using {BERTopic} and automatic summarization with {LLMs} across various periods (annual and decades). By designing targeted queries to extract relevant papers, analyzing textual data, and applying advanced prompting techniques for summarization, we integrate computational models to handle large volumes of data. Our results demonstrate that an ensemble of methods (Ev2) outperforms traditional summarization and density-based approaches, with improvements ranging from 16.7\% to 29.6\% in keyword definition tasks. It generates summaries that outperform in 5 out of the 7 tested metrics while maintaining the logical integrity of bibliographic references. Our results illuminate the shifts in focus within Information Assurance across decades, revealing key breakthroughs and forecasting emerging areas of significance.
- Veröffentlicht in:
Scientific Reports - Typ:
Article - Autoren:
Leiva-Araos, Andrés; Gana, Bady; Allende-Cid, Héctor; García, José; Saikia, Manob Jyoti - Jahr:
2025 - Source:
https://www.nature.com/articles/s41598-025-94551-8
Informationen zur Zitierung
Leiva-Araos, Andrés; Gana, Bady; Allende-Cid, Héctor; García, José; Saikia, Manob Jyoti: Large scale summarization using ensemble prompts and in context learning approaches, Scientific Reports, 2025, 15, 1, 10259, March, Nature Publishing Group, https://www.nature.com/articles/s41598-025-94551-8, LeivaAraos.etal.2025a,
@Article{LeivaAraos.etal.2025a,
author={Leiva-Araos, Andrés; Gana, Bady; Allende-Cid, Héctor; García, José; Saikia, Manob Jyoti},
title={Large scale summarization using ensemble prompts and in context learning approaches},
journal={Scientific Reports},
volume={15},
number={1},
pages={10259},
month={March},
publisher={Nature Publishing Group},
url={https://www.nature.com/articles/s41598-025-94551-8},
year={2025},
abstract={The field of Information Assurance ({IA}) and Cybersecurity has seen substantial evolution, driven by advancements in technology and the increasing sophistication of threats in the digital age. This study employs Large Language Models ({LLMs}), as well as other advanced {NLP} techniques, to conduct a comprehensive analysis of literature from 1967 to 2024. By analyzing a corpus of more than 62,000...}}