Explainable production planning under partial observability in high-precision manufacturing

Conceptually, high-precision manufacturing is a sequence of production and measurement steps, where both kinds of steps require to use non-deterministic models to represent production and measurement tolerances. This paper demonstrates how to effectively represent these manufacturing processes as Partially Observable Markov Decision Processes (POMDP) and derive an offline strategy with state-of-the-art Monte Carlo Tree Search (MCTS) approaches. In doing so, we face two challenges: a continuous observation space and explainability requirements from the side of the process engineers. As a result, we find that a tradeoff between the quantitative performance of the solution and its explainability is required. In a nutshell, the paper elucidates the entire process of explainable production planning: We design and validate a white-box simulation from expert knowledge, examine state-of-the-art POMDP solvers, and discuss our results from both the perspective of machine learning research and as an illustration for high-precision manufacturing practitioners.

Informationen zur Zitierung

Weichert, Dorina; Kister, Alexander; Volbach, Peter; Houben, Sebastian; Trost, Marcus; Wrobel, Stefan: Explainable production planning under partial observability in high-precision manufacturing, Journal of Manufacturing Systems, 2023, 70, 514--524, https://www.sciencedirect.com/science/article/pii/S0278612523001590, Weichert.etal.2023b,

Assoziierte Lamarr-ForscherInnen

lamarr institute person Wrobel Stefan e1663925461852 - Lamarr Institute for Machine Learning (ML) and Artificial Intelligence (AI)

Prof. Dr. Stefan Wrobel

Direktor zum Profil
lamarr institute person Weichert Dorina - Lamarr Institute for Machine Learning (ML) and Artificial Intelligence (AI)

Dorina Weichert

Autorin zum Profil
Portrait of Sebastian Houben.

Dr. Sebastian Houben

Autor zum Profil