Splitting Stump Forests: Tree Ensemble Compression for Edge Devices

We introduce Splitting Stump Forests – small ensembles of weak learners extracted from a trained random forest. The high memory consumption of random forest ensemble models renders them unfit for resource-constrained devices. We show empirically that we can significantly reduce the model size and inference time by selecting nodes that evenly split the arriving training data and applying a linear model on the resulting representation. Our extensive empirical evaluation indicates that Splitting Stump Forests outperform random forests and state-of-the-art compression methods on memory-limited embedded devices.

  • Veröffentlicht in:
    Discovery Science
  • Typ:
    Inproceedings
  • Autoren:
    Alkhoury, Fouad; Welke, Pascal
  • Jahr:
    2025

Informationen zur Zitierung

Alkhoury, Fouad; Welke, Pascal: Splitting Stump Forests: Tree Ensemble Compression for Edge Devices, Discovery Science, 2025, 3--18, Springer Nature Switzerland, Alkhoury.Welke.2025a,

Assoziierte Lamarr-ForscherInnen

Portrait of Pascal Welke.

Pascal Welke

Autor zum Profil