Towards Cross-Lingual LLM Evaluation for European Languages
The rise of Large Language Models (LLMs) has revolutionized natural language processing across numerous languages and tasks. However, evaluating LLM performance in a consistent and meaningful way across multiple European languages remains challenging, especially due to the scarcity of multilingual benchmarks. We introduce a cross-lingual evaluation approach tailored for European languages. We employ translated versions of five widely-used benchmarks to assess the capabilities of 40 LLMs across 21 European languages. Our contributions include examining the effectiveness of translated benchmarks, assessing the impact of different translation services, and offering a multilingual evaluation framework for LLMs that includes newly created datasets: EU20-MMLU, EU20-HellaSwag, EU20-ARC, EU20-TruthfulQA, and EU20-GSM8K. The benchmarks and results are made publicly available to encourage further research in multilingual LLM evaluation.
- Published in:
Ren{'e}; others" - Type:
Inproceedings - Authors:
Thellmann, Klaudia; Stadler, Bernhard; Fromm, Michael; Buschhoff, Jasper Schulze; Jude, Alex; Barth, Fabio; Leveling, Johannes; Flores-Herr, Nicolas; Koehler, Joachim; J{"a}kel
Citation information
Thellmann, Klaudia; Stadler, Bernhard; Fromm, Michael; Buschhoff, Jasper Schulze; Jude, Alex; Barth, Fabio; Leveling, Johannes; Flores-Herr, Nicolas; Koehler, Joachim; J{"a}kel: Towards Cross-Lingual LLM Evaluation for European Languages, Ren{'e}; others", 2024, Thellmann.etal.2024a,
@Inproceedings{Thellmann.etal.2024a,
author={Thellmann, Klaudia; Stadler, Bernhard; Fromm, Michael; Buschhoff, Jasper Schulze; Jude, Alex; Barth, Fabio; Leveling, Johannes; Flores-Herr, Nicolas; Koehler, Joachim; J{"a}kel},
title={Towards Cross-Lingual LLM Evaluation for European Languages},
journal={Ren{'e}; others"},
url={2024},
abstract={The rise of Large Language Models (LLMs) has revolutionized natural language processing across numerous languages and tasks. However, evaluating LLM performance in a consistent and meaningful way across multiple European languages remains challenging, especially due to the scarcity of multilingual benchmarks. We introduce a cross-lingual evaluation approach tailored for European languages. We...}}