We discuss a class of control problems by means of deep neural networks (DNN). Our goal is to develop DNN models that, once trained, are able to produce solutions of such problems at an acceptable error-rate and much faster computation time than an ordinary numerical solver. In the present note we study two such models for the Brockett integrator control problem.
On Learning a Control System without Continuous Feedback
Citation information
On Learning a Control System without Continuous Feedback.