No Cloud on the Horizon: Probabilistic Gap Filling in Satellite Image Series

Author: R. Fischer, N. Piatkowski, C. Pelletier, G. Webb, F. Petitjean, K. Morik
Journal: 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA)
Year: 2020

Citation information

R. Fischer, N. Piatkowski, C. Pelletier, G. Webb, F. Petitjean, K. Morik,
2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA),
2020,
546-555,
IEEE,
Sydney, NSW, Australia,
https://doi.org/10.1109/DSAA49011.2020.00069

Spatio-temporal data sets such as satellite image series are of utmost importance for understanding global developments like climate change or urbanization. However, incompleteness of data can greatly impact usability and knowledge discovery. We in fact consider cases in which no single data point in the set is fully observed. For filling gaps, we introduce a novel approach which utilizes Markov random fields (MRFs). To handle such highly incomplete data during training, we present new methods to incorporate prior knowledge into the probabilistic framework. Moreover, we devise a way to make discrete MRFs predict continuous values via state superposition. Experiments on real-world remote sensing imagery suffering from cloud cover show that the proposed approach outperforms state-of-the-art gap filling techniques.