DoUnseen: Zero-Shot Object Detection for Robotic Grasping

How can we segment varying numbers of objects where each specific object represents its own separate class? To make the problem even more realistic, how can we add and delete classes on the fly without retraining? This is the case of robotic applications where no datasets of the objects exist or application that includes thousands of objects (E.g., in logistics) where it is impossible to train a single model to learn all of the objects. Most current research on object segmentation for robotic grasping focuses on class-level object segmentation (E.g., box, cup, bottle), closed sets (specific objects of a dataset; for example, YCB dataset), or deep learning-based template matching. In this work, we are interested in open sets where the number of classes is unknown, varying, and without pre-knowledge about the objects’ types. We consider each specific object as its own separate class. Our goal is to develop a zero-shot object detector that requires no training and can add any object as a class just by capturing a few images of the object. Our main idea is to break the segmentation pipelines into two steps by combining unseen object segmentation networks cascaded by zero-shot classifiers. We evaluate our zero-shot object detector on unseen datasets and compare it to a trained Mask R-CNN on those datasets. The results show that the performance varies from practical to unsuitable depending on the environment setup and the objects being handled. The code is available in our DoUnseen library repository.

  • Published in:
    Workshop on Perception and Manipulation Challenges for Warehouse Automation Workshop on Perception and Manipulation Challenges for Warehouse Automation
  • Type:
    Inproceedings
  • Authors:
    Gouda, Anas; Roidl, Moritz
  • Year:
    2023

Citation information

Gouda, Anas; Roidl, Moritz: DoUnseen: Zero-Shot Object Detection for Robotic Grasping, Workshop on Perception and Manipulation Challenges for Warehouse Automation, Workshop on Perception and Manipulation Challenges for Warehouse Automation, 2023, https://arxiv.org/abs/2304.02833, Gouda.Roidl.2023a,

Associated Lamarr Researchers

lamarr institute person Gouda Anas - Lamarr Institute for Machine Learning (ML) and Artificial Intelligence (AI)

Anas Gouda

Autor to the profile